Главная > База знаний > Большая советская энциклопедия > ВТОРИЧНАЯ ЭЛЕКТРОННАЯ ЭМИССИЯ

ВТОРИЧНАЯ ЭЛЕКТРОННАЯ ЭМИССИЯ

ВТОРИЧНАЯ ЭЛЕКТРОННАЯ ЭМИССИЯ испускание
электронов поверхностью твёрдого тела при её бомбардировке электронами.
Открыта в 1902 нем. физиками Аустином и Г. Штарке. Электроны, бомбардирующие
тело, наз. первичными, испущенные - вторичными. Часть первичных электронов
отражается телом без потери энергии (упруго отражённые первичные электроны),
остальные - с потерями энергии (неупруго отражённые электроны), расходуемой
в основном на возбуждение электронов твёрдого тела, переходящих
на более высокие уровни энергии. Если их энергия и импульс оказываются
достаточно большими для преодоления потенциального барьера на поверхности
тела, то электроны покидают поверхность тела (истинно вторичные электроны).
Все три группы электронов присутствуют в регистрируемом потоке вторичных
электронов (рис. 1).

0537-1.jpg

Рис. 1. Распределение вторичных электронов
по энергиям: I - упруго отражённые электроны, II - неупруго отражённые
электроны, III - собственно вторичные электроны; Епервичных электронов.



В тонких плёнках В. э. э. наблюдается не
только с той поверхности, к-рая подвергается бомбардировке (эмиссия на
отражение, рис. 2,в), но и с противоположной поверхности (эмиссия на прострел,
рис. 2,б).


Количественно В. э. э. характеризуется
коэфф. В. э. э. o = i, где i
- ток, образованный вторичными электронами, i - ток
первичных электронов, коэфф. упругого r - i/i
и неупругого n = ii отражения электронов,
а также коэфф. эмиссии истинно вторичных электронов б = i(iiтоки, соответствующие упруго отражённым,
неупруго отражённым и истинно вторичным электронам,
ii).


Коэфф. о, r, n и б зависят как от
энергии первичных электронов Е и угла их падения, так и от хим.
состава, метода изготовления и состояния поверхности облучаемого образца.
В металлах, где плотность электронов проводимости велика, образовавшиеся
вторичные электроны имеют малую вероятность выйти наружу. В диэлектриках,
где
концентрация электронов проводимости мала, вероятность выхода вторичных
электронов больше. Вместе с тем вероятность выхода электронов зависит от
высоты потенциального барьера на поверхности. В результате у ряда
неметаллич. веществ (окислы щёлочноземельных металлов, щёлочногалоидные
соединения) о > 1 (рис. 3). У специально изготовленных эффективных эмиттеров
(интерметаллич. соединения типа сурьмянощелочных металлов, спец. образом
активированные сплавы CuAlMg, AgAlMg, AgAlMgZi и др.) от" 1. У металлов
же и собственных полупроводников значение а сравнительно невелико
(рис. 4). У углерода (сажи) и окислов переходных металлов а<1 ,и они
могут применяться как антиэмиссионные покрытия.

0537-2.jpg

Рис. 2. Вторичная электронная эмиссия
на отражение (я) и на прострел (б).



С увеличением энергии Епервичных
электронов а сначала возрастает (рис. 3, 4). Это происходит до тех пор,
пока возбуждение электронов тела происходит вблизи поверхности на расстоянии
меньшем, чем их длина пробега. При дальнейшем росте Еобщее
число возбуждённых электронов продолжает расти, но основная часть их рождается
на большей глубине и число электронов, выходящих наружу, уменьшается. Аналогично
объясняется рост а с увеличением угла падения пучка первичных электронов.

0537-3.jpg

Рис. 3. Зависимость коэффициента вторичной
электронной эмиссии ст от энергии первичных электронов Е

0537-4.jpg

Рис. 4. Зависимость коэффициентов а
и n от энергии первичных электронов Е


Монокристаллы анизотропны по отношению
к движению электронов (см. Анизотропия). При движении электронов
вдоль каналов, образуемых плотно упакованными цепочками атомов, вероятность
рассеяния электронов и ионизации атомов повышается (каналирование). Наблюдается
также дифракция электронов в кристаллич. решётке. В результате этого зависимости
о, n и r от угла падения первичных электронов и кривые о(Еr(Е для монокристаллов имеют сложную
форму с рядом максимумов и минимумов (рис. 5).

0537-5.jpg

Рис. 5. Зависимость о, n и r от угла
падения ф первичных электронов для монокристаллов кремния; Е= 1000 эв; пунктир - зависимость о (ф) для плёнки кремния.



Приводимые для поликристаллов коэфф. о,
n, r, б
обычно представляют собой величины, усреднённые по различным
направлениям.


В. э. э. реализуется за время, меньшее
чем 10-12 сек, т. е. является практически безынерционным
процессом.


Самостоят, значение получило исследование
и применение В. э. э. в сильных электростатич. полях и электрич. полях
сверхвысоких частот. Создание в диэлектрике сильного электрического поля
(105-106 в/см) приводит к увеличению а
до
50-100 (вторичная электронная эмиссия, усиленная поле м). Кроме того, в
этом случае величина а существенно зависит от пористости диэлектрич.
слоя, т. к. наличие пор увеличивает эффективную поверхность эмиттера, а
поле способствует "вытягиванию" медленных вторичных электронов, к-рые,
ударяясь о стенки пор, могут вызвать, в свою очередь, В. э. э. с а>1 и
возникновение электронных лавин. Развитие лавин при определённых условиях
приводит к самоподдерживающейся холодной эмиссии, продолжающейся в течение
мн. часов после прекращения бомбардировки электронами.


В. э. э. применяется во мн. электровакуумных
приборах для усиления электронных потоков (фотоэлектронные умножители,
усилители
изображений и т. д.) и для записи информации в виде потенциального рельефа
на поверхности диэлектрика (электроннолучевые приборы). В ряде приборов
В. э. э. является "вредным" эффектом (динатронный эффект в электронных
лампах,
появление электрич. заряда на поверхности стекла и диэлектриков
в электровакуумных приборах).


В высокочастотном электрическом поле E=Ewt, вследствие В. э. э., на поверхностях электродов наблюдается

0537-6.jpg

Рис. 6. Размножение электронов в высокочастотном
электрическом поле (а) и в скрещённых электрическом Е и магнитном Н полях
(б). Поле Н перпендикулярно плоскости чертежа; стрелками показаны траектории
электронов.



явление лавинообразного размножения электронов
(вторично-электронный резонанс). Это явление открыто X. Э. Фарнсуортом
в 1934. Для возникновения резонанса необходимо, чтобы время между двумя
последовательными соударениями электронов с поверхностями электродов (рис.
6, а) было равно нечётному числу полупериодов высокочастотного поля
Е
(условия синхронизма). При этом электроны могут приобрести в поле энергию,
при к-рой о>1. Размножение электронов происходит на поверхностях двух электродов,
между к-рыми приложено высокочастотное электрич. поле, или на одной поверхности,
помещённой в скрещённые электрич. и магнитное поля (рис. 6, б). Быстрое
нарастание концентрации электронов ограничивается ростом пространств, заряда,
что нарушает условие синхронизма. Явление вторичного электронного резонанса
играет существ, роль в механизме возникновения плотного прикатодного объёмного
заряда в магнетронах и амплитронах, а также в механизме работы
динамич. фотоэлектронных умножителей. С др. стороны, это явление может
быть причиной нестабильной работы этих приборов и может ограничивать их
выходную мощность


Лит.: Добрецов Л. Н., Гомоюнова
М. В., Эмиссионная электроника, М., 1966; Брюининг Г., Физика и применение
вторичной электронной эмиссии, пер. с англ., М., 1958; Браун С., Элементарные
процессы в плазме газового разряда.М., 1961; Г а н и ч е в Д. А. [и др.],
Исследование резонансного высокочастотного разряда в скрещенных полях,
"Журнал технической физики", 1965, т. 35, с. 813. А.Р.Шульман.

А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я