КВАНТОВЫЙ УСИЛИТЕЛЬ

КВАНТОВЫЙ УСИЛИТЕЛЬ устройство для усиления электромагнитных
волн за счёт вынужденного излучения возбуждённых атомов, молекул или ионов.
Эффект усиления в К. у. связан с изменением энергии внутриатомных (связанных)
электронов, движение которых описывается квантовой механикой. Поэтому,
в отличие, напр., от ламповых усилителей, в которых используются потоки
свободных электронов, движение к-рых хорошо описывается классич. механикой,
эти усилители получили название квантовых (см. Квантовая электроника).

T. к. кроме вынужденных квантовых переходов возбуждённых атомов
в состояние с меньшей энергией возможны их самопроизвольные (спонтанные)
переходы, в результате к-рых излучаются волны, имеющие случайные амплитуду,
фазу и поляризацию, то они добавляются к усиливаемой волне в виде шумов.
Спонтанное
излучение является единственным, принципиально неустранимым источником
шумов К. у. Мощность спонтанного излучения очень мала в радиодиапазоне
и резко растёт при переходе к оптич. диапазону. В связи с этим К. у. радиодиапазона
(мазеры)
отличаются
исключительно низким уровнем собственных шумов [в них отсутствуют шумы,
связанные с неравномерностью электронного потока, неизбежные в радиолампах
(см. Дробовой шум); кроме того, К. у. радиодиапазона работают при
температурах, близких к абсолютному нулю, и шумы, связанные с тепловым
движением электронов в цепях усилителя, очень малы]. Благодаря чрезвычайно
низкому уровню шумов чувствительность К. у., т. е. способность усиливать
очень слабые сигналы, велика. К. у. применяются в качестве входных ступеней
в самых высокочувствительных радиоприёмных устройствах в диапазоне длин
волн от 4 мм до 50 см. К. у. радиодиапазона значительно увеличили
дальность действия космических линий связи с межпланетными станциями, планетных
радиолокаторов
и
радиотелескопов.

В оптич. диапазоне К. у. широко используются как усилители мощности
лазерного излучения. К. у. света имеют много общего по принципу действия
и конструкции с квантовыми генераторами света (см. Лазер).

Вынужденный переход атома из состояния с энергией Eв состояние с меньшей энергией E,сопровождающийся испусканием
кванта электромагнитной энергии E=hv
(v
- частота вынуждающей и испускаемой волн, h - Планка постоянная),
приводит
к усилению колебаний. Усиление, создаваемое одним атомом, очень мало. Но
если колебание частоты распространяется
в веществе, содержащем большое число одинаковых возбуждённых атомов, находящихся
на уровне EАтомы же, находящиеся на нижнем уровне E, в результате
вынужденного поглощения, наоборот, ослабляют волну. В результате вещество
будет ослаблять или усиливать волну в зависимости от того, каких атомов
в ней больше, невозбуждённых или возбуждённых, или, как говорят, какой
из уровней энергии более населён атомами.

Если вещество находится в состоянии равновесия термодинамического,
то
распределение частиц по уровням энергии определяется его темп-рой, причём
уровень с меньшей энергией более населён, чем уровень с большей энергией
(рис. 1; см. также Болъцмана статистика). Такое вещество всегда
поглощает электромагнитные волны. Вещество начинает усиливать - становится
активным, лишь тогда, когда равновесие нарушается и возбуждённых атомов
становится больше, чем невозбуждённых (инверсия населён-ностей).
Чем
больше число атомов на верхнем уровне превышает число атомов, находящихся
на нижнем уровне, т. е. чем больше инверсная разность населённостиN,
тем эффективней усиление.

Однако инверсное состояние вещества не может существовать сколь угодно
долго. После прекращения внешнего воздействия в результате теплового движения
частиц и взаимодействия между ними через нек-рое время снова устанавливается
равновесное распределение населённостей уровней (рис. 1). Этот процесс
(релакса-

Рис. 1. Распределение частиц по уровням энергии в условиях термодинамического
равновесия: а - при температуре Tпри температуре
T;
N
-
населённость уровней энергии,N
- равновесная разность населённостей уровней энергии Eи
E

ция) происходит и во время действия внешнего возмущения, стремясь
восстановить тепловое равновесие в веществе. Поэтому внешнее воздействие
должно быть достаточно сильным, чтобы привести вещество в состояние с инверсией
населённостей и не должно быть однократным.

Существуют различные методы создания активной среды. Для К. у. наиболее
удобным оказался метод, основанный на использовании 3 уровней энергии,
предложенный H. Г. Басовым и A. M. Прохоровым. Частицы (атомы
молекулы или ионы), в энергетич. спектре к-рых есть 3 уровня энергии E,
EE
(рис. 2), подвергаются воздействию сильного электромагнитного излучения
(накачки). Частота этого излучения
соответствует частоте перехода между нижним Eи верхним
Eуровнями
(hv
= E). Интенсивность накачки должна быть достаточно
велика, чтобы переходы EEпроисходили
гораздо чаще, чем обратные релаксационные переходы. В этом случае населённости
уровней Eи Eвыравниваются. При этом
для одной из пар уровней Eи
EEи Eнаселённостей образуется для пары уровней с более медленной релаксацией
и с меньшей разностью энергии.

С понижением темп-ры T увеличивается как равновесная разность
населённостейN уровней
(рис. 1), так и инверсная разность населённостейN
(рис. 2). Кроме того, понижение темп-ры сильно замедляет релаксацию и тем
самым снижает требуемую мощность накачки. Поэтому инверсию населённостей,
достаточную для создания эффективных К. у. радиодиапазона, удаётся получить
при охлаждении вещества до темп-ры кипения гелия (4,2 К). Существуют конструкции
К. у., к-рые могут работать при темп-pax до 77 К (точка кипения азота)
и даже 190 К, но они менее эффективны.

Рис. 2. Возникновение инверсии населённостей для уровней энергии Eи EE,Eпод
действием накачки: а - при температуре вещества T;
6
-
при температуре ТTПунктир показывает
распределение частиц по уровням энергии при термодинамическом равновесии.

Наиболее подходящим материалом для К. у. радиодиапазона оказались диамагнитные
кристаллы с небольшой примесью парамагнитных ионов. Обычно применяются
рубин (Al3+),
рутил (TiO3+ и Fe3+),
изумруд [Beокиси хрома Crобъёмом в неск. см3, выращенные искусственно из очень
чистых материалов со строго дозированной примесью парамагнитных ионов.

В отсутствии внешних магнитных полей магнитные моменты ионов ориентированы
хаотически. В постоянном магнитном поле магнитный момент может располагаться
только под неск. определёнными углами к магнитному полю H, энергия
иона в этих положениях различна (см. Зеемана эффект). Образуется ряд
уровней энергии (магнитные подуровни), расстояние между к-рыми зависит
от величины постоянного магнитного поля H. Число магнитных подуровней
определяется спином иона (рис. 3). Разность энергии между ними при
обычных магнитных полях соответствует радиодиапазону и может быть легко
изменена изменением магнитного поля. Такое вещество может усиливать радиоволны
нужной частоты.

Рис. 3. Энергетические уровни парамагнитного иона во внешнем магнитном
поле H расщепляются на несколько магнитных подуровней, число которых
зависит от величины спина иона S; a) S - 1/2; 6) S = 1; в) S = 3/

Основная характеристика всякого усилителя электрич. колебаний - его
к о-эффициент усиления К, показывающий, во сколько раз амплитуда
колебаний на выходе усилителя больше амплитуды на входе. Чем больше путь,
к-рый волна проходит в активном веществе, тем больше коэфф. усиления К.
у. В кристалле рубина волна, распространяясь на расстояние, равное её длине,
увеличивает свою амплитуду незначительно. T. о., для получения достаточного
усиления необходимы монокристаллы больших размеров, выращивание
к-рых связано с серьёзными трудностями. Для К. у. с коэфф. усиления 10
потребовались бы кристаллы (а, следовательно, в магниты) длиной в неск.
л. Такой усилитель был бы очень громоздким и дорогим.

Усиление можно увеличить, заставив волну многократно проходить через
активное вещество. Для этого активное вещество помещают в объёмный резонатор
(полость,
ограниченную металлич. стенками). Волна, попавшая из антенны в резонатор
через отверстие в его стенке (о т-верстие связи), многократно отражается
от стенок резонатора и длительно взаимодействует с активным веществом (рис.
4). Усиление будет эффективным, если при каждом отражении от стенки
фаза отражённой волны совпадает с фазой падающей волны. Это условие выполняется
при определённых размерах резонатора, т. е. резонатор так же, как и само
вещество, должен быть настроен на частоту усиливаемой волны. При каждом
отражении от стенки с отверстием часть электромагнитной, энергии излучается
наружу в виде усиленного сигнала. Для разделения входа и выхода резо-наторного
К. у. применяется циркуля-mop (рис. 5). Такой К. у. наз. отражательным.

Рис. 4. Объёмный резонатор с активным веществом.

Рис. 5. Схематическое изображение отражательного квантового усилителя
с одним резонатором.

Для получения оптимальных характеристик К. у. необходимо подобрать размер
отверстия связи, т. к., кроме требуемого коэфф. усиления, К. у. должен
иметь нужную полосу пропускания, которая определяет его способность усиливать
сигналы, быстро меняющиеся во времени Чем быстрее во времени меняется сигнал,
тем больший частотный интервал он занимает (см., напр., Модуляция колебаний).
Если
полоса
пропускания
усилителя
меньше полосы частот, занимаемой сигналом, то произойдёт сглаживание быстрых
изменений сигнала в усилителе. T о , введение резонатора в конструкцию
К. у. с одной стороны увеличивает его коэфф. усиления, а с другой - во
столько же раз уменьшает его полосу пропускания. Последнее значительно
сужает область применения усилителя. Одноре-зонаторные К. у. не получили
широкого распространения из-за невозможности обеспечить одновременно большой
коэфф. усиления и широкую полосу пропускания. Оказалось, что можно сохранить
широкую полосу пропускания при большом коэфф. усиления, применив неск.
резонаторов. Существует два типа много-резонаторных К. у.- усилители отражательного
типа с циркулятором (рис. 6) и усилители проходного типа (рис. 7).
В проходных К. у. волна распространяется вдоль цепочки резонаторов, заполненных
активным веществом. В каждом резонаторе при значит, полосе пропускания
усиление невелико, но полное усиление всей цепочки может быть достаточно
большим. Резонаторы проходного К. у. соединены друг с другом ферритовыми
невзаимными элементами. Под действием постоянного магнитного поля ферриты
приобретают
свойство пропускать волну, распространяющуюся в одном направлении, поглощая
встречную волну. Осн. недостатком мно-горезонаторных К. у. является сложность
перестройки частоты усилителя, т к. при этом необходимо одновременно с
изменением магнитного поля Я менять собственную частоту большого числа
резонаторов, что технически трудно.

Время взаимодействия волны с веществом можно увеличить, применяя вместо
системы резонаторов замедляющие системы. Скорость распространения
волны вдоль такой структуры во много раз меньше скорости распространения
волны в радиоволноводе или в свободном пространстве. Соответственно увеличивается
и усиление при прохождении волной единицы длины кристалла. Существенно,
что замедляющие структуры широкополосны. Это даёт возможность перестраивать
частоту К. у. изменением только магнитного поля. Полоса пропускания таких
усилителей, а также много-резонаторных К. у. определяется шириной спектральной
линии.
К. у. с замедляющей структурой получили назв. К. у. бегущей
волны. В них также применяются ферриты. Они пропускают волну, распространяющуюся
вдоль замедляющей структуры в нужном направлении, и поглощают встречные,
отраженные волны.

Мощность шумов К. у. удобно измерять, сравнивая её с мощностью теплового
излучения абсолютно чёрного тела. Спектр теплового излучения включает
оптический и радиодиапазоны. T. о., мощность шумов можно выражать через
абс. температуру (см. Шумовая температура). Предельная низкая темп-ра
шума К у, обусловленная спонтанным излучением для
=3 см, составляет 0,5 К Для большинства активных веществ, используемых
в К. у., мощность шума колеблется в пределах от 1 К до 5 К. В реальных
К. у. к этим ничтожно малым шумам добавляется гораздо более мощное тепловое
излучение подводящих
радиоволноводов и др. конструктивных деталей.
Мощность шумов, излучаемую волноводом, можно характеризовать величинойT,
где - коэфф. поглощения волны,
а Т - его абс. темп-pa. Для уменьшения шумов необходимо охладить
возможно большую часть входных деталей. Но охладить весь входной тракт
до темп-ры жидкого гелия невозможно. Поэтому не удаётся снизить шумы К.
у. с антенной до величины ниже 15-30 К. Это приблизительно в 100 раз меньше
уровня шумов лучших усилителей, имевшихся до появления К. у.

Рис. 6. Отражательный усилитель с 3 резонаторами.

Рис 7. Схема квантового усилителя проходного типа с 3 резонаторами.

Охлаждение К. у. производится жидким гелием в криостатах. Трудности,
связанные со сжижением, транспортировкой и переливкой жидкого гелия из
транспортных сосудов в криостаты, ограничивают возможность применения К.
у., осложняют и удорожают их эксплуатацию. Разработаны небольшие холодильные
машины с замкнутым циклом движения охлаждающего вещества. Масса такой машины,
рассчитанной на охлаждение К. у. до 40 К, составляет 10-20 кг. Машина,
рассчитанная на получение 4 К, весит более чем 200 кг и потребляег
мощность в неск. кет.

Лит.: Карлов H. В., Манен-ков А. А·, Квантовые усилители, M-,
1966' С иг мен А., Мазеры, пер. с англ., M., 1966; Квантовая электроника.
Маленькая энциклопедия, M., 1969; Штейншлейгер В. Б., M и с е ж н и к о
в Г. С., Лифанов П. С., Квантовые усилители СВЧ (мазеры), M., 1971. А.
В. францессон.



А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я