НЕПРЕРЫВНАЯ ФУНКЦИЯ

НЕПРЕРЫВНАЯ ФУНКЦИЯ функция,
получающая
бесконечно малые приращения при бесконечно малых приращениях аргумента.
Однозначная функция f(x) наз. непрерывной при значении аргумента
хесли
для всех значений аргумента х,
отличающихся достаточно мало от xзначения функции
f(x) отличаются сколь угодно мало от её значения
f(xТочнее, функция
f (х) наз. непрерывной
при значении аргумента
x(или, как говорят, в точке
xесли каково бы ни было
> О, можно указать такое > О,
что при |х- x<
будет выполняться неравенство |f(x) - f(x.
Это
определение равносильно следующему: функция f (х) непрерывна в точке
хесли
при х, стремящемся к xзначение функции
f(x)
стремится к пределу f(xЕсли все условия, указанные
в определении H. ф., выполняются только при х>=
хили
только при х < хто функция называется, соответственно,
непрерывной справа или слева в точке
хФункция f(x)
называется непрерывной н а отрезке
[а,b], если она непрерывна
в каждой точке х при
а < х < b и, кроме того, в точке
непрерывна справа, а в точке b - слева.


Понятию H. ф. противопоставляется понятие
разрывной
функции.
Одна и та же функция может быть непрерывной для одних и разрывной
для других значений аргумента. Так, дробная часть числа
х [её принято
обозначать через (х),


напр, (4/3) =1/3; ()
= 0,14159...; (2) =0] является функцией разрывной при любом целом значении
и непрерывной при всех других значениях (рис. 1), причём в целочисленных
точках она непрерывна справа.


Простейшими функциями переменного x,
непрерывными при всяком значении х, являются многочлены, синус
=
sin
х), косинус (у = cos х), показательная функция

=
аx,
где а - положительное число). Сумма, разность и произведение
H. ф. снова дают H. ф. Частное двух H. ф. также есть H. ф., за исключением
тех значений х, для к-рых знаменатель обращается в нуль (т. к. в
таких точках рассматриваемое частное не определено). Напр.,
tgx=sin
x/ cos x
есть H. ф. для всех значений х, кроме нечётных кратных/2,
при к-рых cos
х обращается в нуль.


H. ф. обладают многими важными свойствами,
к-рыми и объясняется огромное значение этих функций в математике и eё приложениях.
Одно из важнейших свойств выражается следующей теоремой: для всякой функции,
непрерывной на отрезке [а,b], можно найти многочлен, значения к-рого
отличаются на этом отрезке от значений функции менее чем на произвольно
малое, наперёд заданное число (теорема о приближении H. ф. многочленами).
Справедлива также и обратная теорема: всякая функция, к-рую на нек-ром
отрезке можно с произвольной степенью точности заменить многочленом, непрерывна
на этом отрезке. Функция, непрерывная на отрезке, ограничена на нём и достигает
на этом отрезке наибольшего и наименьшего значения (см. Наибольшее и
наименьшее значения функций).
Кроме того, она принимает на этом отрезке
все значения, лежащие между её наименьшим и наибольшим значениями. Функции,
непрерывные на отрезке, обладают свойством равномерной непрерывности.
Всякая
функция, непрерывная на нек-ром отрезке, интегрируема на нём, т. е. является
производной другой H. ф. Однако не всякая H. ф. сама имеет производную.
Геометрически это означает, что график H. ф. не обязательно обладает в
каждой точке определённым направлением (касательной); это может произойти,
напр., потому, что график имеет угловую точку (рис. 2, функция
у =
|х|), или потому, что он совершает в любой близости точки О бесконечно
много колебаний между двумя пересекающимися прямыми


(рис. 3, функция у = х sin |1/x|
при х <> О и у = 0 при х = O).


Существуют H. ф., не имеющие производной
ни в одной точке (первый пример такого рода был найден Б. Больцано).
Представление
о графике подобной функции даёт рис. 4, где изображены первые этапы построения,
состоящего в неограниченно продолжающейся замене средней трети каждого
прямолинейного отрезка двузвенными ломаными; соотношения длин подбираются
так, чтобы в пределе получить H. ф.


Функция F(x, у, z, ...) нескольких
переменных, определённая в нек-рой окрестности точки уназ. непрерывной в этой точке, если
для любого > О можно указать
такое > О, что при одновременном
выполнении неравенств: |x - x<,
|у - у,
|z - zo| <, ... выполняется
также и неравенство:

|F(x, у, z,...)-F(xy<.


Такая функция будет непрерывной по
отношению к каждому аргументу в отдельности (если остальным аргументам
приданы определённые числовые значения). Обратное, однако, неверно: функция
F (х, у, z, ...),
непрерывная по каждому аргументу в отдельности,
может и не быть H. ф. этих аргументов. Простейший пример этого даёт функция
F
(х, у),
равная
xy/(x2 + у2), если
х2
+ у2 <>
О, и равная О при х = у = О. Она непрерывна
по х при любом фиксированном значении у и по у - при
любом фиксированном значении х. В частности, она непрерывна по х
при
у = О и по у при х = О. Если же положить, напр., у
= х <>
О, то значение функции будет оставаться равным
х2/(х2
+ х2) = 1
/2, т. е. нельзя будет указать такого числа
> О, чтобы при одновременном выполнении неравенств |х| <,
|у| < выполнялось неравенство
|ху/(х2 + у2)| <.
На
H. ф. нескольких переменных распространяются все основные теоремы, относящиеся
к H. ф. одного переменного.


Лит.: X и н ч и н А. Я., Краткий
курс математического анализа, M., 1953; Кудрявцев Л. Д., Математический
анализ, т. 1, M., 1970.




А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я