РАДИОАСТРОНОМИЯ

РАДИОАСТРОНОМИЯ раздел астрономии,
в к ром небесные объекты - Солнце, звёзды, галактики и др.- исследуются
на основе наблюдений излучаемых ими радиоволн в диапазоне от долей мм
до
неск. км. Иногда к Р. относят также и радиолокационную астрономию,
к-рую наз. в этом случае активной Р., в отличие от пассивной Р., занимающейся
наблюдениями собств. радиоизлучения небесных объектов.


Наблюдения в радиодиапазоне электромагнитных
волн существенно дополняют наблюдения небесных тел в оптическом и др.,
более коротковолновых, диапазонах (в т. ч. в рентгеновском). Уже в 19 в.
были высказаны предположения о существовании радиоизлучения Солнца и предприняты
попытки зарегистрировать его. Однако чувствительность применяемых приёмников
радиации оказалась для этого совершенно недостаточной. Лишь в 1931 К. Янский
(США) на волне 14,6 м случайно обнаружил ощутимое радиоизлучение
Млечного Пути. В 1942 было обнаружено радиоизлучение спокойного Солнца,
в 1945 - Луны, в 1946 был открыт первый "дискретный" (т. е. малого размера)
источник радиоизлучения в созвездии Лебедя. Его физич. природа оставалась
неизвестной вплоть до 1954, когда па месте этого радиоисточника
наконец удалось увидеть в оптич. диапазоне удалённую Галактику.


В 60-х гг. 20 в. результаты радиоастрономич.
наблюдений нашли широкое применение в изучении физических явлений, происходящих
в небесных объектах.


Путём теоретич. исследований было установлено,
что почти все наблюдаемые радиоастрономич. явления связаны с известными
в физике механизмами радиоизлучения: тепловым излучением твёрдых
тел (планеты и малые тела Солнечной системы); тормозным излучением тепловых
электронов в полях ионов космич. плазмы (газовые туманности в Галактике,
атмосфера Солнца и звёзд); магнитотормозным излучением тепловых, субрелятивистских
и релятивистских электронов в космич. магнитных полях (активные области
на Солнце, пояса радиации вокруг нек-рых планет, радиогалактики, квазары),
различными коллективными процессами в плазме (вспышки радиоизлучения на
Солнце и Юпитере и др. явления). Наряду со сплошным (непрерывным) спектром
радиоизлучения, обусловленным перечисленными причинами, обнаружено также
монохроматич. излучение небесных объектов. Осн. механизмами образования
спектральных радиолиний являются квантовые переходы между различными атомными
и молекулярными энергетич. уровнями. Среди атомных радиолиний большую роль
в Р. играет линия нейтрального водорода с длиной волны 21 см, возникающая
при переходах между сверхтонкими подуровнями в атоме водорода, и рекомбинационные
линии возбуждённого водорода (см. Рекомбинации). Из многих десятков
обнаруженных молекулярных радиолиний большая часть связана с переходами
между подуровнями энергии, обусловленными вращением молекул (вращат. подуровнями).


Исследование космич. радиоизлучения проводится
с помощью радиотелескопов. Для наблюдений сплошного спектра применяются
широкополосные радиометры; спектральные линии регистрируются при
помощи радиоспектрографов различного типа. Спец. устройства радиотелескопов
- радиоспектрометры, радиополяриметры и др. позволяют исследовать
спектральный состав, интенсивность, поляризацию и др. характеристики радиоизлучения.
Сигналы, приходящие от космич. источников, как правило, очень слабы, вследствие
чего для радиоастрономич. исследований сооружают радиотелескопы с очень
большими антеннами, применяют наиболее чувствит. приёмные устройства. Так,
площадь антенны крупнейшего радиотелескопа составляет ок. 100 000 м2(Т-образный
телескоп под Харьковом, СССР), а самый чувствит. радиометр может зарегистрировать
изменение темп-ры на 0,001-0,0001 К. Радиоизображения небесных объектов
строятся как с помощью одиночных (напр., параболических) зеркал (как в
оптич. астрономии), так и путём более сложных - радиоинтерферометрич. методов
наблюдений (см. Радиоинтерферометр). Эти методы позволяют "синтезировать"
радиоизображение небесных тел, в течение нек-рого времени накапливая излучение,
приходящее от исследуемого объекта. Успехи в регистрации высокочастотных
электрич. колебаний и стабилизации частоты позволили проводить интерферометрич.
наблюдения, сопоставляя записи, получаемые в далеко разнесённых пунктах,
не связанных между собой радиочастотными каналами связи. Большие расстояния
между пунктами наблюдений обеспечивают высокую разрешающую способность
при определении направлений на источники радиоизлучения. С помощью радиотелескопов
проводятся поисковые обзоры неба и детально исследуются отдельные объекты.
Обнаруженные радиоисточники заносятся в каталоги; к 1974 опубликовано ок.
100 каталогов, в к-рых приведены сведения о десятках тысяч объектов, большая
часть из к-рых расположена далеко за пределами нашей Галактики.


По объектам исследования Р. условно делится
на солнечную, планетную, галактическую и метагалактическую (внегалактическую).


Солнечная Р. изучает атмосферу Солнца (хромосферу,
корону, сверхкорону, солнечный ветер). Осн. проблема - выяснение природы
активности Солнца. Характер радиоизлучения Солнца различен в разных диапазонах.
Радиоизлучение в миллиметровом диапазоне, связанное с тормозным излучением
электронов плазмы солнечной хромосферы в электрич. полях ионов, относительно
спокойно. В сантиметровом диапазоне радиоизлучение в значит. степени зависит
от тормозного и магнитотормозного излучения горячей намагниченной плазмы
над солнечными пятнами. Наконец, в метровом диапазоне волн радиоизлучение
Солнца
очень нестабильно и имеет форму всплесков над относительно стабильным
уровнем тормозного излучения солнечной короны. Мощность всплесков иногда
в десятки миллионов раз превосходит излучение спокойной короны. Эти всплески,
по-видимому, вызываются прохождением потоков быстрых частиц сквозь атмосферу
Солнца. Солнечный ветер исследуется по рассеянию в нём радиоволн,
идущих от удалённых радиоисточников.


Планетная Р. исследует тепловые и электрич.
свойства поверхности планет и их спутников, их атмосферы и радиационные
пояса. Радиоастрономич. наблюдения существенно дополняют результаты, полученные
в оптич. диапазоне; особенно это относится к планетам, поверхность к-рых
скрыта от земного наблюдателя плотными облаками. Радиоастрономич. наблюдения
позволили измерить темп-ру поверхности Венеры, оценить плотность её атмосферы;
благодаря таким наблюдениям обнаружены радиационные пояса Юпитера и мощные
вспышки радиоизлучения, возникающие в его атмосфере.


Радиолокационные методы позволяют с очень
высокой точностью измерять расстояния до планет, периоды их вращения, осуществить
картографирование поверхностей планет.


Галактическая Р. изучает структуру нашей
Галактики, активность её ядра, физич. состояние межзвёздного газа и природу
различных галактич. источников радиоизлучения. Мощными галактич. источниками
радиоизлучения являются остатки сверхновых звёзд, а также облака газа,
ионизованного ультрафиолетовым излучением звёзд. В 1967 были обнаружены
пульсары
-
источники пульсирующего радиоизлучения. Эти объекты, по-видимому,
связаны с быстровращающимися нейтронными звёздами, в мощной магнитосфере
к-рых и возникает радиоизлучение. В том же году были обнаружены источники
исключительно ярких и узких радиолиний гидроксила ОН, а затем и линий нек-рых
молекул. Происхождение этих линий, вероятно, связано с действием мазерного
механизма излучения (см. Мазеры). Другим мощным космич. мазером
является водяной пар, находящийся в особых условиях в компактных облаках
межзвёздного газа. Физич. условия в межзвёздном газе изучаются также с
помощью радиолиний возбуждённого водорода и большого числа молекулярных
линий. Зарегистрировано радиоизлучение новых звёзд нек-рых др. типов. Особое
внимание привлекло изучение радиоизлучения тесных двойных звёзд, в к-рых
один из компонентов, возможно, является "чёрной дырой". Галактич.
Р. изучает также структуру магнитного поля Галактики и способствует решению
проблемы происхождения космич. лучей.


Метагалактическая Р. изучает все объекты,
находящиеся за пределами нашей Галактики. Подавляющее число этих объектов
является т. н. нормальными галактиками. Для них характерно относительно
слабое радиоизлучение, связанное с движением быстрых электронов в магнитных
полях этих галактик. Галактики с более активными ядрами обладают радиоизлучением,
мощность к-рого выше, чем у нормальных галактик, в сотни раз. Ещё в сотни
и тысячи раз более мощное радиоизлучение характерно для радиогалактик.
Подавляющая
часть радиогалактик имеет двухкомпонентную структуру, так что оптич. объект
(как правило, гигантская эллиптич. галактика) расположен между компонентами,
причём часто также является источником очень слабого радиоизлучения. Каждая
компонента обычно имеет яркую деталь вблизи края. По-видимому, компоненты
радиогалактик были выброшены из ядер оптич. галактик и разлетаются с большими
скоростями в стороны от них.


Энергия релятивистских электронов и магнитного
поля в компонентах радиогалактик достигает огромной величины, насчитывающей
1061 эрг и, вероятно, пополняется при эпизодически происходящих
взрывах в ядрах галактик. Причина столь бурной активности этих ядер пока
(1975) остаётся загадкой.


Однако самыми мощными внегалактическими
радиоисточниками являются квазары, видимые в оптическом диапазоне,
но совершенно не похожие на обычные галактики. Радиоизлучение квазаров
переменно: оно заметно изменяется за время от нескольких недель до нескольких
лет, что может быть только при относительно малых линейных размерах радиоизлучающих
областей в них. Это подтверждается прямыми наблюдениями структуры квазаров:
с помощью интерферометров с большой базой обнаружены детали размером менее
10-3 сек дуги, к-рые могут быть облаками или потоками
ультрарелятивистских частиц, движущихся в магнитных полях. Детальная структура
квазаров пока изучена недостаточно, а природа их ещё неизвестна.


Помимо дискретных внегалактич. радиоисточников,
наблюдается также фоновое излучение метагалактики. Оно складывается из
совокупного радиоизлучения большого числа не наблюдаемых раздельно слабых
радиоисточников и изотропного излучения, соответствующего темп-ре ок. 2,7
К. Последнее представляет собой излучение вещества, заполняющего метагалактику
на ранней стадии развития Вселенной, когда это вещество (плазма) было плотнее,
чем в совр. эпоху, и имело темп-ру 3000-5000 К. Это излучение наз. реликтовым
излучением.
Т. о., обнаружение реликтового излучения свидетельствует
о том, что ранее Вселенная не была такой, как сейчас,- она была плотней
и горячей. Подсчёты числа внегалактич. радиоисточников также подтверждают
предположение о том, что ранее либо пространств. плотность радиоисточников
в окрестностях нашей Галактики была выше, либо они были в среднем значительно
мощнее, чем в совр. эпоху. Вместе с этим оказалось, что видимая пространств.
плотность радиоисточников на очень больших расстояниях (т. е. на ещё более
ранних стадиях эволюции Вселенной) быстро падает. Это можно объяснить тем,
что в ту эпоху не было источников радиоизлучения (а возможно, и галактик
вообще). Однако падение пространств. плотности может быть результатом и
сильного рассеяния радиоизлучения в метагалактич. газе.


Исследования в области Р. проводятся во
многих астрономических обсерваториях и институтах; существуют специальные
радиоастрономические
обсерватории.
Координацией их деятельности в СССР занимается науч.
совет по проблеме "Радиоастрономия" АН СССР и Астрономический совет
АН СССР. Деятельность радиоастрономич. учреждений в международном масштабе
курируется Международным астрономическим союзом.


Лит.: Шкловский И. С., Космическое
радиоизлучение, М., 1956; Каплан С. А., Пикельнер С. Б., Межзвёздная среда,
М., 1963; Каплан С. А., Элементарная радиоастрономия, М., 1966; Кpayс Д.
Д., Радиоастрономия, пер. с англ., М., 1973; Пахольчик А., Радиоастрофизика,
пер. с англ., М., 1973., Ю. Н. Парийский,




А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я