РАДИОХИМИЯ

РАДИОХИМИЯ область химии, изучающая
химию радиоактивных изотопов, элементов и веществ, законы их физико-хим.
поведения, химию ядерных превращений и сопутствующие им физико-хим. процессы.
Предмет, методы и объекты исследования Р. позволяют выделить в ней следующие
разделы: общая Р.; химия ядерных превращений; химия радиоактивных элементов
и прикладная Р. Общая Р. изучает физико-хим. закономерности поведения радиоактивных
изотопов и элементов. Радиоактивные изотопы по хим. свойствам практически
не отличаются от нсрадиоактивных. В природных объектах, рудах, в продуктах,
получаемых искусственно, в растворах, образующихся после переработки сырья,
они присутствуют в сверхнизких концентрациях; претерпеваемый ими распад
сопровождается ядерным излучением (см. Радиоактивность). Большинство
природных радиоактивных изотопов - дочерние изотопы, продукты распада 238U,
235U
и 232Тh (см. Радиоактивные ряды). Концентрация нек-рых
из них в равновесных рудах U и Th на 1 г чистого материнского изотопа
приведены ниже.

Дочерний изотоп, г


















































































Материнский изотоп


210Po


223Fr


222Rn


227Ас


226Ra


228Ra


228Ac


331Pa


238U


7,6<.10-11




2,14<.10-13




3,4-10-7








235U




1,3<.10-16




1<.
10-13








5,6<.10-5


232Th












1,5<.10-9


5<.10-14







Радиоактивные изотопы получают и искусственным
путём - облучением различных веществ ядерными частицами (выход порядка
10-8-10-12% по массе). В ряде случаев в большом кол-ве
др. атомов находятся сотни, десятки и даже единицы атомов радиоактивных
изотопов. (Лишь в произ-ве ядерного горючего Ри получается в относительно
больших кол-вах, хотя и его концентрация в облучённом нейтронами U мала.)
Выделять радиоактивные элементы и изотопы приходится, следовательно, из
ультраразбавленных систем, а массы их в большинстве случаев не поддаются
взвешиванию. Физико-хим. поведение ультраразбавленных растворов весьма
сложно; оно может описываться законами идеальных растворов, однако иногда
из-за побочных процессов, связанных с адсорбцией, радиолизом и пр., эти
законы не соблюдаются. В общей Р. рассматривается изотопный обмен, процессы
распределения микроколичсств радиоактивных изотопов между фазами, процессы
соосаждения, адсорбции и экстракции, электрохимия радиоактивных элементов,
состояние радиоактивных изотопов в ультраразбавленных системах-дисперсность
(образование радиоколлоидов) и комплексообразование.


Химия ядерных превращений включает изучение
реакций атомов, образующихся при ядерных превращениях ("горячих" атомов),
продуктов
ядерных реакций, методы получения, концентрирования и выделения радиоактивных
изотопов и их ядерных изомеров, а также превращений радиоактивных веществ
под действием собственного излучения, изучение их свойств.


Химия радиоактивных элементов - это химия
естественных (природных) радиоактивных элементов от Ро до U (№№ 84-92)
и искусственных: Тс (№ 43), Рm (№ 61), Np (№ 94) и всех последующих до
№ 106. Условно к этому разделу относят химию и технологию ядерного горючего
- получение и хим. выделение 239Рu из облучённого урана, 233U
- из облучённого нейтронами тория и 235U- из естеств. смеси
изотопов.


Прикладная Р. включает разработку методов
синтеза меченых соединений и применения радиоактивных изотопов в хим. науке
и пром-сти (см. Изотопные индикаторы) и ядерных излучений в хим.
анализе (напр., ядерная у-резонансная спектроскопия).


Объектами исследования в Р. являются
радиоактивные
вещества, содержащие радиоактивные изотопы, многие из к-рых характеризуются
ограниченным временем существования и ядерным (радиоактивным) излучением;
это обусловливает специфич. особенности методов исследования.


Радиоактивное излучение даёт возможность
использовать в Р. специфич. радиометрические методы измерения кол-ва радиоактивного
вещества (см. Радиометрический анализ и Радиохимический анализ)
и
в то же время вызывает необходимость применения особой техники безопасности
при работе, т. к. радиоактивное излучение в дозах, превышающих предельно
допустимые, вредно для здоровья человека (см. Дозиметрия). Методы
измерения радиоактивности превосходят по чувствительности все др. методы
и позволяют иметь дело с минимальным кол-вом вещества, не поддающимся изучению
к.-л. другими методами. С помощью обычных в радиохим. практике приборов
можно определить, напр., 10-10-10-15 г 226Ra,
10-17 г 32Р, 10-17 г 222Rn.
Используя особо чувствительные методы регистрации радиоактивного распада,
можно определить наличие отд. атомов радиоактивного изотопа, установить
факт их распада.


Становление Р. как самостоятельной области
химии началось в кон. 19 в. Основополагающими были работы М. Склодовской-Кюри
и
П. Кюри, открывших и выделивших (1898) Ra и Ро. При этом Склодовская-Кюри
впервые применила методы соосаждения микроколичеств радиоактивных
элементов из растворов с макроколичествами элементов аналогов. В 1911 Ф.
Содди
определял Р. как науку, занимающуюся изучением свойств продуктов радиоактивных
превращений, их разделением и идентификацией. Можно наметить 4 периода
становления Р., связанных с развитием учения о радиоактивности и ядерной
физики.


Первый период (1898-1913) характеризуется
открытием 5 природных радиоактивных элементов - Ро, Ra, Rn, Ac, Pa - и
ряда их изотопов (это стало ясно после открытия в 1913 Содди явления изотонии).
В результате установления К. Фаянсом и Содди правила сдвига, по
к-рому из радиоактивного элемента образуется новый элемент, стоящий в периодич.
системе Д. И. Менделеева или на две клетки левее исходного (а-распад),
или на одну клетку правее его (В-распад), Э. Резерфордом и Содди
была найдена генетич. связь между всеми открытыми изотопами и определено
их место в периодич. системе. В этот период ведутся интенсивные поиски
радиоактивных веществ в природе - радиоактивных минералов и вод. В России
А. П. Соколов и др. учёные изучают радиоактивность минеральных вод, атмосферы
и пр. объектов, П. П. Орлов начинает исследования радиоактивности минералов,
а В. И. Вернадский выступает с основополагающими работами по геохимии
радиоактивных элементов.


Второй период (1914 - 33) связан с установлением
ряда закономерностей поведения радиоактивных изотопов в ультраразбавленных
системах - растворах и газовой среде, открытием (Д. Хевеши и Ф.
Начетом)
изотопного обмена.
В этот период Панет и Фаянс формулируют правила
адсорбции; О. Тан и В. Г. Хлопин проводят систематич. изучение
процессов соосаждения и адсорбции. В результате Гап формулирует законы,
качественно характеризующие эти процессы, Хлопин устанавливает количественный
закон соосаждения (Хлопина закон), а его ученик А. П. Ратнср разрабатывает
термодинамич. теорию процессов распределения вещества между твёрдой кристаллич.
фазой и раствором. В этот же период др. сов. учёный Л. С. Коловрат-Червинский
и затем Ган развивают работы по эманированию
твёрдых в-в, содержащих
изотопы радия, а позже Б. А. Никитин выполняет обширные исследования
клатратных соединений инертных газов (на примере соединений радона). В
1917 Вл. И. Спицын проводит серию работ по определению методом радиоактивных
индикаторов (основы его разработали ранее Хевеши и Панет) растворимости
ряда соединений тория. В эти годы Склодовская-Кюри, Панет и др. изучают
радиоактивные изотопы в ультраразбавленных растворах, условия образования
радиоколлоидов.


Третий период (1934 - 45) начинается после
открытия супругами И. Жолио-Кюри и Ф. Жолио-Кюри искусственной
радиоактивности. В этот период в результате работ Э. Ферми (по исследованию
действия нейтронов на хим. элементы), И В. Курчатова с сотрудниками
(открывших и изучивших ядерную изомерию искусственных радиоактивных изотопов),
Гана и нем. учёного Ф. Штрасмана (установивших деление ядер урана под действием
нейтронов), открытия Силарда - Чалмерса эффекта разрабатываются
основы методов получения, концентрирования и выделения искусственных радиоактивных
изотопов. Использование циклотрона позволило Э. Сегре с сотрудниками
синтезировать новые искусственные элементы - Тс и At. Применяя радиометрические
методы в сочетании с тонкими радиохим. методами разделения микроколичеств
радиоактивных элементов, М. Пере (Франция) выделила из продуктов распада
Ас элемент № 87 (Fr). С сер. 30-х гг. бурно развивается прикладная Р. Метод
радиоактивных (изотопных) индикаторов получает широкое распространение


Современный, четвёртый период развития
Р. связан с использованием мощных ускорителей ядерных частиц и ядерных
реакторов. Осуществляется синтез и выделение искусственных хим. элементов
- прометия (амер. учёные Дж. Марийский и Л. Гленденин), трансурановых элементов
от № 93 до 105 (Г. Сиборг с сотрудниками, Г. Н. Флёров
с
сотрудниками) и др. (см. также Актиноиды, Курчатовым). Совершенствуются
методы получения ядерного горючего, способы выделения Рu и продуктов деления
из облучённого в ядерном реакторе U, а также регенерации отработанного
в реакторе U, решается ряд других вопросов технологии ядерного горючего.
При этом на основе возникающих технологич. проблем широко развивается химия
искусственных (особенно трансурановых) и естественных (особенно U, Th,
Pa) радиоактивных элементов, в частности химия их комплексных соединений.
Получает обоснование химия новых атомоподобных образований - позитрония,
мюония и мезоатомов. В Р. особое значение приобретает экстракция и хроматография;
всё шире применяется метод радиоактивных индикаторов в приложении к исследованиям
механизма и кинетики хим. реакций, строения хим. соединений, явлений адсорбции,
соосаждения, катализа, измерению физико-хим. постоянных, разработке методов
радиометрического анализа. Радиохимические методы исследования находят
широкое применение в решении мн. проблем геохимии и космохимии, а также
при поиске полезных ископаемых. Развивается новое направление в Р.- химия
процессов, происходящих вслед за ядерной реакцией образования радиоактивных
изотопов, когда вновь полученные атомы обладают высокой энергией. Наконец,
проводятся работы по изучению продуктов ядерных превращений под действием
частиц высокой энергии (см. Ядерная химия). Во всех этих областях
Р. активно работают сов. учёные и учёные ряда зарубежных стран. Развитие
Р. продолжается, охватывая всё новые области химии радиоактивных веществ.


Лит.: Радиоактивные изотопы в химических
исследованиях, под ред. А. Н. Мурина, Л.-М., 1965 (совм. с др.); Старик
И. Е., Основы радиохимии, 2 изд., Л., 1969; Вдовенко В. М., Современная
радиохимия, М., 1969; Мурин А. Н., Физические основы радиохимии, М., 1971;
Несмеянов А н. Н., Радиохимия, М., 1972.

АН. Н. Несмеянов.

А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я