Главная > База знаний > Большая советская энциклопедия > СТАТИСТИЧЕСКИХ ИСПЫТАНИЙ МЕТОД

СТАТИСТИЧЕСКИХ ИСПЫТАНИЙ МЕТОД

СТАТИСТИЧЕСКИХ ИСПЫТАНИЙ МЕТОД
метод вычислительной и прикладной математики, основанный на
моделировании
случайных
величин и построении статистич. оценок для искомых величин; то же, что
Монте-Карло
метод.
Принято считать, что С. и. м. возник в 1944, когда в связи с
работами по созданию атомных реакторов амер. учёные Дж. фон Нейман и С.
Улам начали широко применять аппарат теории вероятностей для решения прикладных
задач с помощью ЭВМ. Первоначально С. и. м. использовался гл. обр. для
решения сложных задач теории переноса излучения и нейтронной физики, где
традиционные численные методы оказались мало пригодными. Затем его влияние
распространилось на больший класс задач статистич. физики, очень разных
по своему содержанию. С. и. м. применяется для решения задач теории игр,
теории массового обслуживания и математич. экономики, задач теории передачи
сообщений при наличии помех и т. д. Для решения детерминированной задачи
по С. и. м. прежде всего строят вероятностную модель, представляют искомую
величину, напр, многомерный интеграл, в виде математич. ожидания функционала
от случайного процесса, к-рый затем моделируется на ЭВМ. Хорошо известны
вероятностные модели для вычисления интегралов, для решения интегральных
уравнений 2-го рода, для решения систем линейных алгебраич. уравнений,
для решения краевых задач для эллиптич. уравнений, для оценки собственных
значений линейных операторов и т. д. Выбором вероятностной модели можно
распорядиться для получения оценки с малой погрешностью. Особую роль в
различных приложениях С. и. м. играет моделирование случайных величин с
заданными распределениями. Как правило, такое моделирование осуществляется
путём преобразования одного или нсск. независимых значений случайного числа
а, распределённого равномерно в интервале (0,1). Последовательности "выборочных"
значений$\alpha$ обычно
получают на ЭВМ с помощью теоретико-числовых алгоритмов, среди к-рых наибольшее
распространение получил "метод вычетов". Такие числа наз. "псевдослучайными",
они проверяются статистич. тестами и решением типовых задач. Если в расчёте
по С. и. м. моделируются случайные величины, определяемые реальным содержанием
явления, то расчёт представляет собой процесс "прямого моделирования".
Такой расчёт неэффективен, если изучению подлежат редкие события, т. к.
реальный процесс содержит о них мало информации. Эта неэффективность обычно
проявляется в слишком большой величине вероятностной погрешности (дисперсии)
случайных оценок искомых величин. Разработано много способов уменьшения
дисперсии указанных оценок в рамках С. и. м. Почти все они основаны на
модификации моделирования с помощью информации о "функции ценности" значений
случайных величин относительно вычисляемых величин. С. и. м. оказал и продолжает
оказывать существенное влияние на развитие др. методов вычислительной математики
(напр., на развитие методов численного интегрирования) и при решении MH.
задач успешно сочетается с др. вычислит, методами и дополняет их. Более
специальные математич. вопросы, связанные с С. и. м., см. в ст. Статистическое
моделирование.



Лит.: Метод Монте-Карло в проблеме
переноса излучений, M., 1967; Метод статистических испытаний (Метод Монте-Карло),
M., 1962; Решение прямых и некоторых обратных задач атмосферной оптики
методом Монте-Карло, Нопосиб., 1968; E р м ЕК о в С. M., Метод Монте-Карло
и смежные вопросы, M., 1971; M и х а и л о в Г. А., Некоторые вопросы теории
методов Монте-Карло, Новосиб., 1974. Г. И. Марчук.




А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я