ХИМИЧЕСКАЯ СВЯЗЬ

ХИМИЧЕСКАЯ СВЯЗЬ взаимное притяжение
атомов, приводящее к образованию молекул и кристаллов. Принято говорить,
что в молекуле или в кристалле между соседними атомами существуют X. с.
Валентность атома (о чём подробнее сказано ниже) показывает число связей,
образуемых данным атомом с соседними атомами [см. также Валентность].
Э.
Франкленд
в
1852 предложил концепцию, согласно к-рой каждый элемент образует соединения,
связываясь с определённым числом эквивалентов др. элементов, при этом один
эквивалент соответствует количеству, требуемому одной валентностью. Ф.
А. Кекуле и А. В. Г. Колъбе в 1857 в соответствии с представлениями
валентности выдвинули положение, что углерод обычно имеет валентность 4,
образует 4 связи с др. атомами. А. С. Купер
в 1858 указал, что атомы
углерода, связываясь между собой, могут образовывать цепочки. В его записи
хим. формулы имели очень большое сходство с современными, связи изображались
чёрточками, соответствующими валентным связям между атомами. Термин "химическое
строение" впервые ввёл А. М. Бутлеров в 1861. Он подчёркивал, сколь
существенно выражать строение единой формулой, показывающей, как в молекуле
соединения каждый атом связан с др. атомами. Согласно Бутлерову, все свойства
соединения предопределяются его молекулярным строением; он высказал уверенность,
что точную структурную формулу можно установить по результатам изучения
путей синтеза данного соединения. Следующий шаг, заключавшийся в приписывании
молекулам пространственной трёхмерной структуры, был сделан в 1874 Я. X.
Вант-Гоффом
и
Ж. А. Ле Белея.


В 19 в. валентная связь изображалась чёрточкой
между символами двух хим. элементов. Природа этой связи была совершенно
неизвестна. После открытия электрона делались многочисл. попытки развить
электронную теорию X. с. Наиболее успешными были работы Г. Н. Льюиса,
который
в 1916 предложил рассматривать образование X. с., называемой теперь ковалентной
связью, как результат того, что пара электронов становится общей для двух
атомов. Разработка квантовой механики (1925) и использование мн. экспериментальных

методов (молекулярной спектроскопии, рентгенографии
кристаллов, газовой электронографии, методов изучения магнитных свойств)
для определения длин связей (межатомных расстояний), углов между связями,
числа неспаренных электронов и других структурных параметров молекул и
кристаллов привели к более глубокому пониманию природы X. с.



Электронная структура атомов. Электронам
в атоме приписываются различные орбитали, к-рые характеризуются главным
квантовым числом и, орбитальным квантовым числом / и магнитным квантовым
числом mi (см. Квантовые числа, Квантовая химия). Имеется одна наиболее
устойчивая орбиталь с п = 1, образующая /С-оболочку. L-Оболочка
с п = 2 включает одну орбиталь с l =0 и m=
0 и три с l = 1 и т = -1, 0 и + 1. Их называют
ls-орбиталь, 2s-op-биталь и три 2р-орбитали. М-Оболочка состоит
из Зs-орбитали, трёх Зр-орбиталей и пяти Зd-орбиталей. Электрон имеет спин
со спиновым квантовым числом s = 1/ориентироваться относительно определённого направления двумя различными
путями - с компонентами, даваемыми магнитным спиновым квантовым числом
mравным
+ 1/3 или -1/с одинаковыми значениями всех квантовых чисел. Следовательно, ls-орбиталь,
образующая К-оболочку, может быть занята только одним электроном с положительным
или отрицательным спином или же двумя электронами (электронной парой),
одним - с положительным спином, другим - с отрицательным.


Заполнение определённых оболочек и подоболочек
приводит к особой устойчивости атомов, наблюдающейся у атомов инертных
газов. В этих устойчивых структурах электронная конфигурация заполненной
оболочки гелия Is2, неона 2s26, аргона
3s2 Зр6, криптона 3d10 4s2
6, ксенона 4d10 5s2 5p6,
радона 4fu 5d10 6s2 6pB,
эка-радона
5fli
6dia
7s2 7p6. [О заполнении электронных
оболочек см. также Атом, Периодическая система элементов.]



Ковалентная связь. В 1927 дат. физик
О. Бурровыполнил квантовомеханич. расчёт молекулярного иона водорода и
показал, что единственный электрон в этом ионе Нr занимает орбиталь, наз.
молекулярной орбиталью, к-рая простирается вокруг обоих протонов. Теоретич.
расчёт энергии связи этого молекулярного иона, т. е. разности между суммарной
энергией отдельного атома и протона и энергией иона в его основном состоянии,
привёл к значению 255 кдж-моль-1, прекрасно согласующемуся
с экспериментом. Вскоре было отмечено, что электронную структуру молекулярного
иона водорода можно рассмотреть, используя волновую функцию осн. состояния
атома водорода. По мере сближения атома водорода и протона появляется возможность
выхода электрона из области, окружающей одно ядро, в область, окружающую
второе ядро, причём в каждом случае электрон занимает ls-орбиталь. Молекулярная
орбиталь, образованная как сумма этих двух ls-орбиталей, является хорошим
приближением к молекулярной орбитали, полученной Бурро путём решения волнового
уравнения Шрёдингера. Если образовать волновую функцию как разность двух
ls-орбиталей, то это, как было показано,


Огвечает не притяжению, а отталкиванию.
Первая волновая функция является симметричной линейной комбинацией двух
ls-функций и отвечает устойчивому состоянию, образованию одноэлектронной
ковалентной связи, тогда как вторая функция, являющаяся антисимметричной
линейной комбинацией тех же 1 s-функций, отвечает неустойчивому состоянию.
Иногда говорят, что образование одноэлектронной ковалентной связи в молекуле
водорода соответствует резонансу данного электрона между двумя атомными
орбиталями или между двумя атомами водорода.


В том же году (1927) было выполнено два
квантовомеханич. расчёта X. с. в молекуле водорода. Амер. физик
Э. У. Кон-дон использовал метод молекулярных орбиталей, приписав молекуле
водорода структуру, в к-рой за основу была принята орбиталь Hрассчитанная Бурро, причём к этой орбитали были отнесены оба электрона
с противоположными спинами. Нем. физики В. Гейтлер и Ф. Лондон отнесли
один электрон, с положительным спином, к ls-орбитали одного атома водорода,
а второй, с отрицательным спином, к ls-орбитали др. атома водорода. Волновая
функция для данной молекулы была суммой этой функции и функции, в к-рой
два электрона менялись местами - электрон с положительным спином относился
ко второму атому, а с отрицательным - к первому атому. Оба расчёта, как
Кондона, так и Гейтлера и Лондона, привели к выводу об устойчивости молекулы
водорода с энергией связи, превышающей приблизительно в 1,7 рага энергию
связи в молекулярном ионе водорода. Связь между двумя атомами водорода
в молекуле водорода -прототип связи с поделённой электронной парой по Льюису,
обычно наз. ковалентной связью.


На основании формальных результатов квантовомеханич.
рассмотрения X. с. можно сделать следующий простой вывод: атомы могут образовывать
ковалент-ную связь (осуществляемую парой электронов) за счёт каждой стабильной
орбитали, занятой первоначально одним электроном; при этом образуется связь
такого типа, как описанная выше для молекулы водорода, а её стабильность
может быть связана с тем же самым явлением резонанса. Иными словами, для
образования ковалентной связи необходимо наличие двух электронов с противоположными
спинами и по одной стабильной орбитали у каждого из двух связываемых атомов.


Атом водорода с единственной стабильной
орбиталью (Is) может образовывать лишь одну ковалентную связь. Атом углерода
и другие атомы второго периода (бор, азот, кислород) могут образовывать
не более четырёх ковалентных связей с использованием четырёх орбиталей
L-оболочки. Квантовомеханич. рассмотрение приводит также к выводу, что
каждая дополнит, связь, образующаяся в молекуле, в общем случае ведёт к
дальнейшей стабилизации молекулы, а следовательно, наиболее устойчивы такие
электронные структуры молекулы, в к-рых все стабильные орбитали атомов
либо использованы для образования связей, либо заполнены неподелёнными
парами электронов.


Метану СНследующая структура валентных связей:

2819-1.jpg


Чёрточки означают поделённые электронные
пары. Можно сказать, что поделённая электронная пара занимает ls-op-биталь
каждого атома водорода и одну из четырёх орбиталей L-оболочки атома углерода.
Атомы водорода, т. о., комплектуют завершённую ТС-оболочку (как в атоме
гелия), а атом углерода, к-рый также имеет неподелённую пару ls-электронов,
комплектует завершённую L-оболочку (как в атоме неона).


Представление о гибридных орбита-лях, формирующих
связи, даёт решение проблемы, волновавшей химиков и физиков в ранний период
квантовой теории. Четыре орбитали L-оболочки делятся на два вида - 2s-орбиталь
и три 2р-ор-битали, а четыре связи атома углерода, как показывают хим.
свойства соединений углерода, оказываются одинаковыми. В действительности
вместо 2s-орби-тали и трёх 2р-орбиталей может образовываться набор эквивалентных
sp3-гибридных орбиталей, называется тетра-эдрическими орбиталями;
они направлены к вершинам правильного тетраэдра и обладают большей силой
связи, чем s-орбиталь или р-орбиталь (Л. Полит, 1931).


Для молекулы воды Нзаписать следующую валентную структуру:

2819-2.jpg


Атом кислорода окружён двумя неподелёнными
парами электронов и двумя поделёнными парами. 2s-Орбиталь несколько более
стабильна, нежели 2р-ор-битали, так что неподелённые электронные пары прежде
всего заполняют 2s-op-биталь. Если бы две связи в молекуле воды были образованы
р-орбиталями атома кислорода, то угол между связями был бы равен 90°, поскольку
при угле 90° друг относительно друга р-орбитали имеют максимальную силу
связи. Расчёты показывают, что максимальная устойчивость достигается в
том случае, когда орбитали, образующие связи в молекуле воды, в небольшой
мере имеют также s-xa-рактер, соответственно валентный угол между
связями несколько больший, чем 90°. Экспериментальное значение валентного
угла в молекуле НHковалентная связь между атомами углерода имеется в этилене Са тройная связь - в ацетилене Сдля этих молекул следующие:

2819-3.jpg


В образовании двойной связи участвуют
две поделённые электронные пары, а в образовании тройной связи - три пары.
В каждой из этих структур атом углерода приобретает электронную конфигурацию
неона, будучи окружён четырьмя поделёнными парами электронов. Можно сказать,
что атом углерода образует четыре одинарные (ординарные, простые) связи,
направленные к вершинам тетраэдра. В двойной и тройной связях имеются две
или три изогнутые связи. Интересно, что в этих случаях расстояния между
атомами углерода равны соответственно 133 пм и 120 пм, что
с точностью до 1 пм совпадает со значениями, соответствующими изогнутым
связям при нормальной длине одинарной связи 154 пм в молекуле этана.
Такое соответствие подтверждает правильность представления, что двойная
и тройная связи могут быть описаны моделью изогнутых связей.


Энергия двойной углерод-углеродной связи
на 73 кдж-моль-1 меньше, чем сумма энергий двух одинарных
связей, энергия же тройной связи на 220 кдж-молъ-1 меньше
суммы энергий трёх одинарных связей. Эти различия в устойчивости могут
быть связаны с напряжённостью изогнутых связей. Энергия напряжения благоприятствует
превращению кратных связей в одинарные, и именно поэтому вещества с кратными
связями легко присоединяют водород; такие вещества принято называть ненасыщенными,
а соответствующие соединения, имеющие только одинарные связи, например
этан, наз. насыщенными.


Резонанс и структура бензола<. Правила
построения валентных структур на основании представлений о поделённых парах
электронов и использования устойчивой орбитали каждого из двух атомов,
между к-рыми образуется ковалентная связь, позволяют написать структурные
формулы для очень большого числа веществ, однако для нек-рых веществ одна
валентная структура не даёт вполне адекватного представления о свойствах.
Веществом именно такого рода является, напр., озон Оисследования озона показали, что атомы в его молекуле расположены под углом
117° (угол между связями у центрального атома кислорода), а каждая из двух
связей кислород-кислород имеет длину 128 пм. Есть все основания
приписать молекуле озона следующую валентную структуру:

2819-4.jpg


Эта структура представляется удовлетворительной,
поскольку каждый из атомов кислорода окружён четырьмя парами электронов,
причём нек-рые пары поделённые, а нек-рые неподелённые. Однако если приписать
формальные заряды атомам, разделив поделённые пары электронов поровну между
двумя атомами, то центральный атом будет иметь положительный заряд, а атом,
связанный с ним одинарной связью,-отрицательный. Такую электронную структуру
нельзя считать вполне удовлетворительной, поскольку межатомное расстояние,
отвечающее двойной связи, должно быть приблизительно на 21 пм меньше,
чем расстояние для одинарной связи, тогда как согласно наблюдениям эти
расстояния равны. Такое расхождение можно объяснить, приняв и вторую валентную
структуру для данной молекулы:

2819-5.jpg


ионную валентность +1; металлы второй группы
образуют двухзарядные ионы и имеют ионную валентность + 2, и т. д. Аналогично
галогены, элементы седьмой группы, присоединяют электрон и образуют однозарядные
отрицательные ионы, т. е. имеют ионную валентность -1; кислород и его аналоги
могут присоединять два электрона с образованием двухзарядных отрицательных
ионов со структурой инертных газов и обладают ионной валентностью -2, и
т. д. Состав солей определяется ионными валентностями их катионов и анионов
при соблюдении условия электронейтральности образующегося соединения.


Кулоновские силы, действующие между ионами,
напр. Na+ и С1-, приводят к тому, что каждый ион
притягивает соседние ионы противоположного знака и создаёт из них окружение.
В случае хлорида натрия это приводит к устойчивому упорядоченному расположению,
отвечающему кристаллич. структуре, при к-рой каждый ион имеет шесть ближайших
соседей противоположного знака и двенадцать соседей того же знака, находящихся
на расстоянии в 21/энергия для такого расположения находится суммированием по парам ионов,
и она равна -1,7476 e2/R для пары ионов Na+Cl-,
где R - расстояние между центрами ионов ближайших соседей, е - заряд
иона. Следовательно, кристалл стабилизирован кулоновским притяжением, энергия
такой системы на 75% превышает энергию системы положительных и отрицательных
зарядов, находящихся на тех же расстояниях R друг от друга. Кулоновская
энергия кристалла NaCl большая - она составляет ок. 860 кдж-молъ-1;
с
учётом сродства хлора к электрону затраты такой энергии более чем
достаточно для сублимации металлич. натрия, ионизации его атомов и диссоциации
молекул хлора на атомы, а остальная энергия (410 кож-моль-1)
соответствует
энергии образования хлорида натрия из элементов.


Силы притяжения ионов противоположного
заряда наз. силами ионной валентности. Можно сказать, что в кристалле хлорида
натрия, в к-ром ион натрия имеет координационное число шесть (то есть он
окружён шестью ближайшими соседями), общая ионная валентность иона натрия
+1 разделяется между соседями, при этом каждую из шести связей между натрием
и прилегающим хлором можно рассматривать как ионную связь силой 1/Отрицательный заряд иона хлора удовлетворяет шесть ионных связей, каждая
силой 1/правилу валентности, весьма существенному в неорганич. химии, сумма ионных
валентностей, направленных к каждому отрицательному иону, должна быть точно
или приближённо равна ионной валентности данного отрицательного иона.


В ионных кристаллах связи в действительности
не являются чисто ионными. Они носят частично ковалентный характер, о чём
сказано в следующем разделе.


Электроотрицательность и частично ионный
характер связей. В 20-х гг. 20 в., когда были развиты концепции ионной
валентности и ковалентности, но ещё не были известны осн. принципы электронного
строения атомов и молекул, велась широкая дискуссия о том, как описывать
молекулу, подобную НС1-как имеющую ковалентную связь или казало, что его
молекула имеет гексагональную симметрию и что все шесть углерод-углеродных
связей эквивалентны. Этот факт позволяет сказать, что осн. состояние молекулы
бензола может быть представлено двумя структурами Кеку-ле, налагающимися
одна на другую или резонирующими между собой. В соответствии с квантовомеханич.
расчётами реальная молекула бензола должна быть приблизительно на 150 кдж-моль-1устойчивее,
нежели гипотетическая молекула, описываемая лишь одной структурой Кекуле.
Эта дополнительная устойчивость обусловливает повышенную сопротивляемость
бензола гидрогенизации по сравнению с обычными ненасыщенными соединениями.


Молекула бензола в её основном состоянии
может быть представлена единственной формулой, такой, как: Кружок, проведённый
внутри шестиугольника, означает, что данная структура описывает реальную
молекулу, то есть отвечает большей устойчивости по сравнению со структурой
Кекуле, и отражает эквивалентность всех шести углерод-углеродных связей.
И всё же предпочтительнее бензол изображать двумя структурами Кекуле с
оговоркой, что действительная структура молекулы соответствует резонансу
между этими двумя структурами. Зная свойства, присущие одинарным связям
и двойным связям, можно предсказать свойства, отвечающие структуре Кекуле
и суперпозиции двух структур Кекуле. Длина одинарной углерод-углеродной
связи 154 пм, а двойной связи - 133 пм. Для суперпозиции
двух структур Кекуле ожидается среднее значение, более близкое, вследствие
резонансной стабилизации, к значению для двойной связи. Наблюдаемое значение
140 пм согласуется с расчётным. Кроме того, если принять тетраэдрическую
структуру каждого углеродного атома с деформированными (изогнутыми) двойными
связями (общее ребро двух тетраэдров), можно предсказать, что молекула
бензола должна быть плоской с атомами углерода в углах правильного шестиугольника
и атомами водорода в углах большего правильного шестиугольника, лежащего
в той же плоскости. Эти предсказания подтверждены опытными данными.


Ионная связь. Расплавленный хлорид натрия
- хороший проводник электричества. Эту расплавленную соль можно считать
состоящей из положительных ионов натрия Na+ и отрицательных
ионов хлора С1- в достаточно компактном состоянии, при к-ром
в условиях термич. равновесия каждый ион обладает возможностью медленно
перемещаться. Под действием приложенного электрич. поля ионы натрия передвигаются
в направлении отрицательного электрода, а ионы хлора-в направлении положительного
электрода, обусловливая проводимость электрич. тока.


Ион натрия Na+ - это атом натрия,
потерявший один электрон и приобретший устойчивую электронную конфигурацию
неона, а ион хлора С1- - атом хлора, присоединивший один электрон
и приобретший устойчивую электронную конфигурацию аргона. Формула хлорида
натрия NaCl определяется стабильностью этих ионов и условием электронейтральности
данного вещества. Металлы первой группы периодич. системы элементов Менделеева
образуют однозарядные ионы и, как принято говорить, имеют


Приведённые структуры эквивалентны. При
квантовомеханич. рассмотрении молекулы озона ей приписывается волновая
функция, к-рая представляет собой сумму волновых функций для этих двух
валентных структур. Установлено, что подобная волновая функция отвечает
среднему значению длины связи, одному и тому же для обеих связей, и, кроме
того, эта волновая функция соответствует большей стабильности, нежели каждая
из волновых функций отд. валентных структур. Такая дополнит, стабилизация
описывается как энергия резонанса, соответствующая резонансу молекулы между
двумя структурами. Отсюда следует, что озон нельзя удовлетворительно описать
одной валентной структурой обычного типа, тогда как комбинация двух валентных
структур приводит к удовлетворительному описанию молекулы в её основном
состоянии.


Этот факт не противоречит осн. принципу,
выдвинутому в 1861 Бутлеровым,-каждое вещество имеет определённое молекулярное
строение, которое обусловливает свойства данного вещества (см. Химического
строения
теория. Электронные теории в органической химии). Молекула
озона в её основном состоянии имеет определённое единственное строение.
Оно может быть представлено одной формулой:


Стрелки в этой формуле показывают, что
двойная связь и одинарная связь могут меняться местами. Структура с двойной
связью в одном положении и одинарной связью в другом не представляет к.-л.
состояния молекулы озона, однако две резонирующие валентные структуры вместе
взятые или структурная формула, в к-рой символически показано, что двойная
и одинарная связи меняются местами, дают приемлемое представление о действительном
единственном строении молекулы озона в основном состоянии.


Аналогичная ситуация наблюдается при рассмотрении
молекулы бензола, строение к-рой казалось химикам загадочным до разработки
(1928-33) теории резонанса (наз. также мезомерией). Кекуле указывал, что
четырёхвалентность углерода в бензоле можно показать с помощью структурной
формулы с чередующимися простыми и двойными связями. Однако таких структур
может быть две:


Были предприняты попытки обнаружить изомеры
таких веществ, как о-дихлорбен-зол (атомы хлора присоединены к атомам углерода,
связанным двойной связью в случае первого изомера и одинарной связью в
случае второго). Однако обнаружить такие изомеры не удалось, и было признано,
что все шесть углерод-углеродных связей в бензольном кольце эквивалентны
друг другу. Детальное квантовомеханич. рассмотрение бензола

2819-6.jpg

2819-7.jpg


как имеющую ионную связь. Структура Н+С1
представлялась удовлетворительной, поскольку было известно о существовании
соответствующих ионов, а ион хлора имеет устойчивую структуру аргона. Точно
так же структура Н-С1:


представлялась удовлетворительной, поскольку
включала поделённую электронную пару, что создавало устойчивую конфигурацию
гелия для водорода и устойчивую конфигурацию аргона для хлора. Хлористый
водород в водном растворе диссоциирует на ионы водорода и хлора, а это
позволяет предполагать, что ионное строение может быть присущим молекуле
и в газовой фазе. Диэлектрич. проницаемость газа, однако, соответствует
электрич. дипольному моменту, составляющему лишь 19% величины, ожидаемой
для ионной структуры при известном межатомном расстоянии 127 пм. Решение
этой проблемы было найдено с помощью общей квантовомеханич. теории молекулярного
строения. Оно сводилось к тому, что действительное строение молекулы в
основном состоянии может быть описано волновой функцией, представляющей
собой сумму функций, отвечающих ионной структуре и ковалент-ной структуре.
В случае молекулы НС1 связь может быть описана как ионная со значит, долей
ковалентности или, лучше сказать, как ковалентная связь с небольшой долей
(19% ) ионности.


Рассматриваемая молекула в её основном
состоянии имеет, конечно, единственное строение, к-рое может быть представлено
единственной формулой Н-С1. В случае ковалентной связи между одинаковыми
атомами, как в Н-Н или С1-С1, связывающая электронная пара поделена поровну
между двумя атомами. Идеальная ковалентная связь может быть определена
как такая связь, в к-рой электронная пара поделена поровну между двумя
атомами, даже если они не одинаковы. Если бы в НС1 осуществлялась идеальная
ковалентная связь, то можно было бы ожидать, что её энергия была бы средней
между энергиями связей в Ндля ряда одинарных связей между неодинаковыми атомами энергия связи равна
средней энергии, отвечающей связям между одинаковыми атомами. Примером
может служить HI с энергией связи 299 кдж-молъ1, к-рая
всего лишь на 5 кдж &bull; молъ1 больше среднего
значения для Нмомент молекулы HI также близок к нулю, а это указывает на то, что поделённая
электронная пара почти в равной мере относится к обоим атомам. Связь в
молекуле HI может быть описана как ковалентная с очень малой степенью ионности.
Когда же связь имеет высокую степень ионности, энергия такой связи значительно
превышает величину, отвечающую идеальной ковалентной связи; в случае НС1
она на 92 кдж-молъ1 больше. Эта величина, представляющая
собой
энтальпию
образования НС1 из элементарных веществ, является энергией резонанса при
19% ионности, т. е. энергией, соответствующей резонансу между ионной структурой
и идеальной ковалентной структурой.


Было установлено, что одинарные связи между
неодинаковыми атомами вообще несколько прочнее, чем средняя энергия соответствующих
связей между одинаковыми атомами, и что этот выигрыш в энергии, энтальпии
образования, в пер-


Полная шкала электроотрицательности

Н 2.1













































































































































































































































































































































































Li 1,0

Na


Be 1,5 Mg


В

2,0

Al






















С

2.5 Si


N 3,0

Р


О 3,5 S


F 4,0 Cl


0,9


1,2


1.5






















1,8


2,1


2,5


3,0


К


Ca


Sc


Ti


V


Cr


Mn


Fe


Co


Ni


Cu


Zn


Ga


Ge


As


Se


Br


0,8


1,0


1,3


1,5


1,6


1.6


1,5


1.8


1.9


1,9


1.9


1,6


1.6


1.8


2.0


2,4


2,8


Rb


Sr


Y


Zr


Mb


Mo


Tc


Ru


Rh


Pd


Ag


Cd


In


Sn


Sb


Те


I


0,8


1,0


1,2


1,4


1,6


1,8


1,9


2,2


2,2


2,2


1,9


1,7


1,7


1,8


1,9


2,1


2,5


Cs


Ba


La-Lu


Hf


Та


W


Re


Os


Ir


Pt


Au


Hg


Tl


Pb


Bi


Po


At


0,7


0,9


1,0-1,2


1,3


1.5


1,7


1.9


2.2


2,2


2,2


2,4


1,9


1,8


1,9


1,9


2,0


2.2


Fr


Ra


Ac


Th


Pa


U


Np-No






















0,7


0,9


1,1


1,3


1,4


1,4


1,4-1,3

























*По Полингу. Значения, приведённые в таблице,
относятся к обычным окислит, состояниям элементов. Для нек-рых элементов
наблюдается изменение электроотрицательности с изменением окислительного
числа; так, напр., Fe(II)l,8, a Fe(III) 1,9- СиТ 1 9 а Cu(II)2,0; Sn(II)l,8,
a Sn(IV) 1,9.


вом приближении пропорционален квадрату
разности электроотрицательностей атомов. Значения электроотрицательности
(х)
могут
быть приписаны элементам в соответствии с табл. (см.). Дополнит, энергия
одинарной связи между неодинаковыми атомами приблизительно равна произведению
100кдж-моль1на
квадрат разности их электроотрицательностей. Несколько лучшее приближение
достигается с учётом члена в четвёртой степени; тогда приближённое уравнение
для энергии (Е) одинарной связи А-В (в кдж-молъ1)
между
различными атомами А и В будет иметь вид:

2819-8.jpg


Принцип электронеитральности. Принцип электронейтральности,
впервые сформулированный И. Ленгмюром(1920), гласит: устойчивые
молекулы и кристаллы имеют такое электронное строение, при к-ром электрич.
заряд каждого атома близок к нулю, а по существу всегда лежит в пределах
от -1 до +1. Так, напр., степень ионности связи О-Н ок. 40%, так что в
молекуле воды Н+0,4
О-0,8 ; в ионе гид-роксония (НзО)+ результирующие заряды равны
(Нз+0,4О-0,2+)+. Для молекулы закиси азота приемлемы
следующие три структуры, поскольку они отвечают структуре неона для каждого
атома:

2819-9.jpg


Однако третья структура не отвечает принципу
электронейтральности, ибо формальный заряд -2 на концевом атоме азота не
уравновешивается ионным характером связи N-N. Отсюда следует вывод, что
нормальное состояние данной молекулы отвечает резонансу между структурами
А
и
Б
с
очень небольшим вкладом или совсем без вклада структуры
В;
этот
вывод подтверждается наблюдаемыми значениями длин связей и колебательных
частот.


Окислительное число. После того как стали
пользоваться представлениями об ионной валентности и ковалентности и начали
подробно записывать электронное строение молекул, выявилась необходимость
в простом способе указания окислительных состояний элементов в том или
ином соединении. Для этой цели стали пользоваться понятием чокисли-тельное
число".


Окислительное число элемента в соединении
выражает электрич. заряд, приписываемый атомам данного элемента в соответствии
с определёнными правилами. Эти правила простые, но не столь уж однозначные,
и их применение требует хим. интуиции: 1) окислительное число одноатомного
иона в ионном соединении равно электрич. заряду данного иона. 2) Окислительное
число атома в простом веществе равно нулю. 3) В ко-валентном соединении
известной структуры окислительное число каждого атома равно заряду, сосредоточенному
на данном атоме при условии, что каждая поделённая пара электронов целиком
приписывается более электроотрицательному из тех двух атомов, к к-рым она
относится. Пара, относящаяся к атомам одного и того же элемента, обычно
разделяется между ними. 4) Окислительное число элемента в соединении с
неясной структурой может быть вычислено на основании разумного приписывания
окислительных чисел другим элементам в данном соединении.


Напр., в перекиси водорода Натомам водорода приписывается окислительное число +1; нейтральность молекулы
требует тогда, чтобы кислород имел окислительное число -1. Следовательно,
в Нмежду его состоянием в Н

Слово "валентность" при его использовании
в области неорганич. химии обычно относится к состоянию окисления элемента,
выражаемому окислительным числом, тогда как в органич. химии оно обычно
относится к ковалентности данного элемента.


Водородная связь. Структурным элементом,
оказывающим значит, влияние на свойства многих веществ, является водородная
связь. При определённых условиях атом водорода может быть связан довольно
прочно с двумя др. атомами. Имея лишь одну стабильную ор-биталь, атом водорода
способен образовывать только одну ковалентную связь. Эта связь может, однако,
резонировать между двумя положениями. Наибольшее значение имеют те водородные
связи, к-рые образуются между двумя сильно электроотрицательными атомами,
в особенности между атомами азота, кислорода и фтора. В нек-рых соединениях,
таких, как ион FHF, атом водорода находится приблизительно посредине между
двумя электроотрицательными атомами, образуя половину связи с каждым из
них. Большинство же водородных связей несимметричны, одно межатомное расстояние
больше другого на 50-80 пм, что соответствует отношению прочно-стей
связи, равному приблизительно 10. Энергия более слабой связи обычно составляет
около 20-40 кдж-молъ1, что и называется энергией водородной
связи.


Водородные связи, образуемые молекулами
воды, обусловливают удивительно высокие точки плавления льда и кипения
воды, существование максимума плотности воды, расширение воды при замерзании.
Многие особые свойства неорганич. и органич. молекул, напр, димеризация
жирных кислот, объясняются образованием водородных связей. Водородная связь
- особенно важная структурная особенность белков и нуклеиновых кислот.


Связи с участием d-орбиталей. В 1893 А.
Вернер
развил
новые представления в химии. Было известно, что мн. соли металлов обладают
способностью соединяться с др. солями, водой, аммиаком или др. молекулами.
Хлорид калия и хлорид платины (IV) образуют, например, хорошо кристаллизующуюся
соль 2KCl*PtCLи образует CoIне укладывались ни в одну теорию валентности, и их существование приписывалось
действию слабых остаточных сил, второстепенных по сравнению с силами обычных
X. с. На основании изучения огромного числа таких соединений Вернер показал,
что по составу и свойствам их можно систематизировать на базе нового допущения,
согласно к-рому атом металла обладает способностью соединяться с определённым
числом (обычно с четырьмя или шестью) др. атомов, ионов или молекул и координировать
их вокруг себя в определённом геометрич. порядке. Вернер смог представить
убедительные доказательства правильности своего предположения (оно подтверждалось
гл. оор. фактом существования изомеров) о том, что большинство комплексов
с координационным числом 6, таких, как гекса-хлороплатинат-ион [PtCl2-
и гексамми-но-кобальт (III)- ион [Со (NH3+,
имеют октаэдрическую конфигурацию, при к-рой шесть групп, окружающих центральный
атом, располагаются вокруг него по вершинам правильного октаэдра. Он показал
также, что ряд комплексов с координационным числом 4 имеет тетраэдрическую
конфигурацию, например [Zn (NH2+,
тогда как другие - плоскую квадратную конфигурацию, характерную для комплексов
Pd (II) и Pt (II), напр, для [PtCl2-. Общее признание
теория Вернера получила в 1911, после его предсказания и экспериментального
подтверждения существования оптич. изомерии ряда октаэдрически координированных
комплексов. В 1920 амер. исследователи Р. У. Г. Уайкоф и Р. Г. Дикинсон
рентгенографически определили структуры кристаллов KKподтвердив существование октаэдрических и плоскоквадратных конфигураций.


Теория этих комплексов была развита в 1931
Полингом. Он показал, что гибридизация s-орбитали и трёх р-орбиталей приводит
к образованию четырёх тетра-эдрических орбиталей, тогда как гибридизация
этих четырёх орбиталей с двумя d-орбиталями приводит к набору из шести
гибридных spd-орбиталей, направленных к вершинам правильного октаэдра,
а с одной d-орбиталью образуются четыре гибридные sр2d-орбитали,
направленные к вершинам квадрата. Число электронов в Pd(IV) и Pt(IV) таково,
что две d-op-битали могут участвовать в образовании связи и, следовательно,
образуются ок-таэдрич. комплексы с координационным числом 6, тогда как
Pd(II) и Pt(II) с двумя избыточными электронами имеют только одну доступную
d-орбиталь и могут образовывать лишь квадратные плоские комплексы. Из такого
рассмотрения вытекало, что ковалентные комплексы Ni(II) должны иметь плоскую
квадратную конфигурацию и быть диамагнитными, тогда как большинство соединений
никеля парамагнитны. Эти предсказания сразу же были подтверждены результатами
измерения магнитных свойств и определения кристаллической структуры координационных
соединений никеля.


Химические связи в металлах. Природа X.
с. в металлах и интерметаллич. соединениях остаётся и в 1977 выясненной
не полностью. Представляется, однако, правильным описывать металлы и интерметаллич.
соединения как катионы металла, связанные воедино валентными электронами,
обладающими значит, свободой движения в данном металле. Число электронов
одного атома, участвующих в связывании металлич. кристалла как целого,
можно назвать "металлической валентностью" данного атома.


Металлич. валентность щелочных металлов
1, а щёлочноземельных 2. Значения для переходных металлов не вполне надёжны,
однако, судя по прочности, твёрдости и точкам плавления, значения эти возрастают
от 3 для Sc приблизительно до 6 для Сr и последующих элементов, а затем
понижаются для Сu и Zn. Магнитные свойства лантаноидов свидетельствуют
о том, что металлич. валентность их равна 3 (исключение составляют Еu и
Yb, для к-рых она равна 2); парамагнитная восприимчивость Еu и Yb такая
же, как и у их двухвалентных солей, тогда как для остальных лантаноидов
она такая же, как у их трёхвалентных солей.


Координационное число атома в металле больше
числа связывающих электронов. Связи в металлах могут быть описаны как ковалентные
связи, резонирующие между нек-рым большим числом межатомных положений.
Так, напр., алюминий имеет кубич. структуру с плотнейшей упаковкой, в к-рой
каждый атом окружён двенадцатью соседями. Валентность алюминия равна 3
и, следовательно, связь с каждым из соседних атомов может быть описана
как связь кратности 1/

Для того чтобы валентные связи могли резонировать
между различными поло жениями, мн. или большинство атомов должны иметь
соответствующие орбитали связи, обычно не занятые электроном. Такие орбитали
можно назвать "металлическими орбиталями". Характерной особенностью металлов
является то, что большинство атомов в них обладают такой орбиталью. Олово,
напр., с четырьмя электронами на внешних s- и р-орбиталях может распределить
эти четыре электрона между четырьмя sp3 -орбиталями и образовать
т. о. четыре ковалентные связи. Но тогда оно не будет иметь дополнительной
орбитали и, следовательно, образующаяся структура не должна быть металлической.
Модификация олова, наз. серым оловом, действительно имеет структуру алмаза,
в к-рой каждый атом связан с четырьмя тетраэдрически расположенными соседями
и к-рая не является металлической. Длина связи здесь такая же, как длина
одинарной связи.


В белом олове, металлич. модификации олова,
каждый атом имеет шесть соседей с длиной связи, отвечающей валентности
ок. 2,5 для атома олова. Если 2 из 4 внешних электронов атома олова образуют
неподелённую пару, занимая 5s-орбиталь, то оставшиеся два электрона могут
занять две из трех р-орбиталей и участвовать в образовании связи. При этом
одна р-орбиталь остаётся свободной и может служить металлич. орбиталью.
По данным наблюдений, длина связи в белом олове отвечает металлич. валентности
2,5, а не 2, что указывает на наличие резонанса (до 25% ) с четырёхвалентной
структурой олова.


Если доступны d-орбитали, то могут образовываться
гибридные spd-орбитали, к-рые ещё лучше подходят для образования
связи, поскольку имеют большую концентрацию в направлении данной связи.
В тех случаях, когда лучшие из возможных хр-орбиталей образуют между собой
тетраэдрический угол 109°28', лучшие spd-орбитали образуют углы 73 и 133°.


Ковалентность переходных металлов. Переходные
металлы с пятью d-орбита-лями, одной 5-орбиталью и тремя р-ор-биталями
во внешней оболочке могут образовывать 9 гибридных spd-орбиталей (под углами
ок. 73 и 133° одна по отношению к другой) и, следовательно, могут образовывать
9 ковалентных связей в том случае, если данный атом имеет


9 электронов во внешней оболочке. Примером
может служить Osвещества можно описать как имеющую четыре атома осмия в четырёх противоположных
вершинах куба и четыре атома кислорода в др. четырёх вершинах. Каждый атом
кислорода передаёт электрон атому осмия. У этого атома кислорода, т. о.,
остаётся пять валентных электронов, и он может образовывать три ковалентные
связи, а атом осмия имеет девять валентных электронов и может образовывать
девять ковалентных связей. Каждый атом осмия образует три связи с прилегающими
атомами кислорода и двойную связь с атомом углерода каждой из трёх прилегающих
карбонильных групп, достигая, т. о., своей максимальной валентности 9.
Для большинства карбонилов переходных металлов хим. формулы отвечают использованию
всех 9 внешних spd-орбиталей для образования связей или неподелённых электронных
пар. Напр., атом никеля имеет 10 внешних электронов. В Ni(CO)8 из них используются для образования двойных связей с 4 карбонильными
группами. На образование этих 4 двойных связей идут 8 из 9 spd-орбиталей,
а оставшуюся одну занимает неподелённая пара.


8 Fe(CO)электрон от одной карбонильной группы, с к-рой он образует одинарную связь
Fe-С = О; оставшиеся 8 орбиталей и электроны он использует на образование
двойных связей с атомами углерода четырёх других карбонильных групп. В
Сr(СО)в атом Сr получает 3 электрона от трёх карбонильных групп, что даёт


9 валентных электронов. Он образует одинарные
связи с этими тремя группами и двойные связи с другими тремя карбонильными
группами. Частично ионный характер хром-углеродных и углерод-кислородных
связей, устанавливаемый по разности электроотрицательностей данных элементов,
достаточен для передачи большей части избыточного отрицательного заряда
электронов от хрома к кислороду так, что атомы остаются почти нейтральными,
удовлетворяя принципу электронейтральности.



Четверные связи. Атомы углерода
могут образовывать тройные связи, но не могут образовать четверных связей,
поскольку четвёртая связь углерода направлена в сторону, противоположную
направлению трёх остальных связей. Переходные металлы, однако, могут образовывать
связи такой кратности благодаря тому, что четыре spd-орбитали под углом
73° друг к другу (около 133° для двух пар) направлены по одну сторону от
атома. Первые данные о существовании таких связей. были получены сов. химиками
В. Г. Кузнецовым и П. А. Казьминым в 1963, когда они сообщили, что рентге-ноструктурное
изучение соединения рения показало присутствие группы Reс
расстоянием
Re-Re 222 пм, причём вокруг каждого атома рения располагалось четыре
атома хлора на расстоянии 243 пм. Наблюдавшееся межатомное расстояние
Re - Re приблизительно на 46 пм меньше, чем значение для одинарной
связи. Очевидно, что в этом случае существует четверная связь, на что указывал
в 1964 амер. химик Ф. А. Коттон, к-рый установил наличие аналогичных межатомных
расстояний во многих др. кристаллах, а это подтверждает существование связей
CraCr, ResRe, TcsTc и МоэМо.


Лит.: П о л и н г Л., Общая химия,
пер. с англ., М., 1974; Паулинг Л. (Полинг), Природа химической связи,
пер. с англ., М.-Л., 1947; Pauling L., The nature of the chemical bond
and the structure of molecules and crystals..., 3 ed., Itha" ca (N. Y.),
1960. Лайнус Полинг (США).




А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я